این پروپوزال در قالب فرمت word قابل ویرایش ، آماده پرینت و ارائه به عنوان پروژه پایانی میباشد
فهرست
فصل اول – انواع نیروگاهها۱
نیروگاه آبی۱
نیروگاه بخاری۵
نیروگاه هسته ای۱۱
نیروگاه اضطراری۱۶
نیروگاه گازی۱۷
فصل دوم- ساختمان توربین گازی۲۵
کمپرسور۲۵
محفظه احتراق۲۸
توربین۳۶
فصل سوم- تعریف مسأله و ضرورت خنک کردن هوای ورودی کمپرسور ۳۹
سیستمهای خنک کننده تبخیری۴۲
۱-سیستم air washer43
2-سیستم خنک کننده media43
3-سیستم فشار قوی fog44
سیستمهای خنک کننده برودتی۴۶
۱-چیلرهای تراکمی۴۶
۲-چیلرهای جذبی۴۷
سیستمهای ذخیره سازی سرما۴۹
فصل چهارم۵۱
سیستم تماس مستقیم۵۳
سیستم غیر تماسی۵۴
خنک سازی تبخیری به وسیله فاگینگ(مه پاشی)۵۴
تولید fog61
توزیع اندازه ذرات۶۱
ملاحظات خوردگی در کمپرسورهای توربین گاز۶۱
نحوه توزیع fog-فاکتور موثر بر تبخیر۶۲
سیستم کنترل۶۳
مکان نازلها در توربین گازی۶۴
کیفیت اب مصرفی۶۵
نمودار رطوبت سنجی پاشش ورودی۶۶
شرایط محیطی و قابلیت کاربرد پاشش fog در ورودی ۶۸
اسیب FOD69
موارد یخ زدگی۷۰
تحریک کمپرسور۷۰
تغییر شکل حرارتی ورودی۷۱
مسایل مربوط به خراب شدن۷۱
خوردگی در مجرای ورودی۷۲
فرسودگی روکش کمپرسور۷۳
انتخاب سیستم مناسب۷۴
بررسی اقتصادی۷۴
خنک سازی هوای دهانة ورودی – ویژگی طراحی و عوامل اقتصادی۸۳
امور اقتصادی و مالی (تأمین بودجه)۹۴
راه حل b/o /o در polar works95
سرمایه گذاری بلند مدت در مقابل سرمایه گذاری کوتاه مدت ۱۰۱
راهکار POLAR WORKS110
مقایسه تکنولوژی فاگینگ در مقابل سیستم POLAR113
ظرفیت و گنجایش اضافی و عوامل اقتصادی و اعتباری آن ۱۲۸
ارزیابی بهینه سازی پروژه های نیروی جدید با خنک کردن هوای ورودی به توربین گازی۱۲۸
سیستم خنک کننده مهی با روش نوری برای توربین گازی۱۵۷
خنک سازی دهانه هوا برای توربینهای گازی با سیستم optiguide160
تزریق swirl flashبرای بهبود کارکرد نیروگاه۱۶۷
فصل پنجم۱۸۶
راه هوشمندانهای برای رسیدن به قدرت بیشتر از یک توربین گازی وجود دارد
چکیده مطالب۱۸۷
خنک سازی ورودی۱۹۰
مه پاشی((fogging191
اثر فاگینگ در نیروگاه قم۱۹۷
پیوست۲۳۵
منابع۲۴۱
انواع نیروگاهها:
نیروگاههایی که به منظور تولید انرژی الکتریکی به کار برده میشوند را میتوان به انواع زیر طبقهبندی کرد:
۱-۱- نیروگاه آبی
۲-۱- نیروگاه بخاری
۳-۱- نیروگاه هسته ای
۴-۱- نیروگاه اضطراری
۵-۱- نیروگاه گازی
۱-۱- نیروگاه آبی
تبدیل نیروی عظیم آب به نیروی الکتریکی از بدو پیدایش صنعت برق مورد توجه خاص قرار داشته است زیرا علاوه بر این که آب رایگان در اختیار نیروگاه و صنعت قرار میگیرد تلف نیز نمیشود و از بین نمیرود بخصوص موقعی که بتوان پس از تبدیل انرژی جنبشی آب به انرژی الکتریکی، در کشاورزی نیز از آن استفاده کرد ارزش چنین نیروگاهی دو چندان میشود.
آن چیز که استفاده از نیروی آب را برای تولید انرژی الکتریکی محدود میکند و به آن شرایط خاصی میبخشد گرانی قیمت تأسیسات (سد و کانال کشی و غیره) میباشد. از این جهت است که در کشورهای مترقی و پیشرفته و صنعتی با وجود رودخانههای پر آب و امکانات آب فراوان هنوز قسمت اعظم انرژی الکتریکی توسط نیروگاههای حرارتی تولید میشود و نیروگاههای آبی فقط در شرایط خاص میتواند از نظر اقتصادی با نیروگاههای حرارتی رقابت کند.
اگر برای به حرکت در آوردن توربین آبی در هر ثانیه Q متر مکعب آب (QKg/sec * 1000) با ارتفاع ریزش H متر موجود باشد قدرت تولید شده برابر است با:
راندمان ماشین آبی است که اگر برابر ۷۵/۰= فرض شود (اغلب راندمان ماشینهای آبی در حدود %۹۵-۸۵ میباشد) میتوان رابطه ۱ را به صورت ساده زیر نوشت:
چنانچه دیده میشود قدرت توربینهای آبی متناسب با ارتفاع ریزش مؤثر آب میباشد. که در آن H ارتفاع ریزش آب Q: مقدار ریزش آب و N عده دور توربین است.
استفاده از توربینهای با عده دور مخصوص زیاد در ارتفاع ریزش آب زیاد بیحاصل است زیرا در اثر سرعت زیاد سیال، تلفات دستگاه زیاد و راندمان آن کم خواهد شد. لذا نیروگاههای آبی متناسب با ارتفاع ریزش آب به سه دسته زیر تقسیم میشوند:
نیروگاه آبی با فشار کم
نیروگاه آبی با فشار متوسط
نیروگاه آبی با فشار زیاد
نیروگاههای آبی را از نظر نوع آب به دو دسته زیر تقسیم میکنند :
الف: نیروگاه آب رونده
ب: نیروگاه انبارهای
نیروگاه آب رونده نیروگاهی است که از همان مقدار آب دائمی موجود در رودخانه و یا آبی که به دریاچه میریزد بهره میگیرد و بدین جهت باید دائماً کار کنند و برق پایه شبکه را تأمین کند.
نیروگاه انبارهای در مناطق کوهستانی که مقدار آب رودخانه در فصول مختلف شدیداً متغیر است احداث شود در این نیروگاه از مقدار آب جریاندار استفاده نمیشود. بلکه از آبی که در پشت سد به صورت دریاچه انباشته شده برای تولید انرژی الکتریکی مصرف میشود. چنین نیروگاهی بیشتر برای تأمین برق پیک بکار برده میشود زیرا در مواقعی که احتیاج به نیروی برق زیاد نیست میتوان از هرز رفتن آب جلوگیری کرد و آب را برای مواقع ضروری در پشت سد انباشت.
نیروگاههای ابی بسته به نوع توربین بکار رفته در ان به ۳ دسته تقسیم میشوند:
۱-نیروگاه ابی با توربین فرانسیس
۲- نیروگاه ابی با توربین کاپلان
۳- نیروگاه ابی با توربین پلتون
که این تقسیم بندی با توجه به ارتفاع ریزش اب صورت گرفته است.
۲-۱- نیروگاه بخاری:
اگر بتوان در تحویلات یک نیروگاه بخار از آن مقدار کالری که در آخرین مرحله از توربین خارج شده و در کندانسور تبدیل به آب میگردد استفاده صنعتی نمود، راندمان حرارتی نیروگاه به مقدار قابل ملاحظهای بالا میرود بدین جهت در تمام جاهائی که علاوه بر انرژی الکتریکی احتیاج به مقدار زیادی کالری یا انرژی حرارتی باشد از توربین بخاری استفاده میشود که بتوان پس از انجام کار الکتریکی از حرارت باقی مانده نیز استفاده کرد بعبارت دیگر در این نوع توربین بخار، بخار خارج شده از آخرین مرحلة توربین توسط لولههایی برای مصارف صنعتی و حرارتی هدایت میشود و بخار پس از تحویل انرژی حرارتی خود تقطیر شده و آب مقطر آن مجدداً به دیگ بخار باز میگردد و چنانچه دیده میشود عمل کندانسور را مصرف کننده انرژی حرارتی انجام میدهد.
البته عمل تقطیر در اینجا در درجه حرارت بیشتری انجام میگیرد تا در کندانسور که تقریباً خلاء ایجاد میشود و بدین جهت گوئیم توربین در چنین نیروگاهی با فشار مخالف کار میکند.
یک کارگاه صنعتی بزرگ که دائماً انرژی حرارتی مصرف میکند بهتر است مصرف الکتریکی خود را نیز خود، تهیه کند. زیرا در این صورت نیروی برق تولید شده یک نیروی باز یافته است که در کنار تولید انرژی حرارتی بدست آمده است. بدین جهت است که در کارخانجات شیمیایی، کاغذسازی، بریکت سازی، آبجو سازی و غیره اغلب از این نوع مراکز حرارتی که در ارتباط با مولد برق میباشد استفاده میشود
قسمتهای مهم تشکیل دهنده یک نیروگاه بخار:
به طور کلی یک نیروگاه بخار از بخشهای متعددی تشکیل شده است که در زیر به معرفی هر یک از آنها میپردازیم:
۱-بویلر:
به طور کلی بویلر به اسبابی اطلاق میشود که در آن تولید بخار صورت میگیرد، بویلر یک مولد بخار است. یک بویلر نیروگاهی، شامل قسمتهای مختلف است که جهت سرویس، ارتباط و کنترل، بازدید و اطلاع رسانی به اتاق کنترل و پرسنل بهره بردار تعبیه شده است. مهمترین این قسمتها در زیر آمده است.
یکی از مهمترین اجزاء یک بویلر نیروگاهی که زیر فشار بحرانی کار میکند، درام است. درام در لغت به معنی مخزن غربال کننده آمده است و در اینجا نیز به منظور جدا کردن آب از بخار بکار گرفته میشود. بطوری که میتوان وظایف درام را بصورت زیر تعریف کرد:
۱- جدا سازی بخار از آب
۲- تصفیه شیمیایی آب
۳- ذخیره سازی آب به منظور تأمین بخار مورد نیاز در هنگام تغییرات بار
جدا سازی بخار از آب که از مهمترین وظایف درام است به سه صورت انجام میشود:
۱ـ جدا سازی ثقلی
۲ـ جدا سازی به روش مکانیکی
۳ـ جدا سازی به روش گریز از مرکز
پس از آن که سیال محرک (آب) در بویلر به صورت مافوق گرم (سوپر هیت) درآمد آن را به سمت توربین هدایت میکنیم و این سیال باعث به گردش در آمدن توربین و در راستای آن تولید الکتریسیته میشود.
به دلیل این که سیال محرک در نیروگاه بخار، آب است و این سیال پس از انجام کار در توربین بخار به صورت دو فازه میباشد و باید دوباره به بویلر ـ جهت تکرار سیکل ـ هدایت شود میبایست آن را کاملاً تقطیر نماییم. (زیرا اگر آب جدید را جایگزین آن نمائیم و بخار خروجی توربین را هدر بدهیم مقرون به صرفه نخواهد بود) این فرآیند (تقطیر) در سیستم تحت عنوان چگالش آب تغذیه صورت میگیرد.
در حالت کلی سیستم چگالش آب تغذیه از قسمتهای زیر تشکیل شده است:
۱ـ دستگاه انتقال گرما (چگالنده) CONDENSER
۲ـ گرمکنهای آب تغذیه (در صورت وجود)
۳ـ دستگاه آب جبران MAKE UP WATER
۴ـ دستگاه پرداخت آب چگالیده شده
CONDENSATE POLISHING PLANT
همانطور که میدانید آب خنک کن پس از آن که بخار خروج از توربین بخار را تحت فرآیند تقطیر به طور کامل به مایع اشباع تبدیل کرد، خود گرمای نهان سیال محرک را به صورت همرفت اجباری (اگر کندانسور از نوع تماس غیر مستقیم باشد) دریافت میکند، پس باید به گونهای این گرما را از آب خنک کن بگیریم، تا امکان استفاده مجدد
آن در چرخه وجود داشته باشد، بدین منظور از سیستم خنک کننده آب چگالنده استفاده میکنیم.
سیستم خنک کننده آب چگالنده
COOLING SYSTEM MAIN
امروزه روشهای متعددی جهت خنک سازی آب چگالنده (آب خنک کن) وجود دارد، که استفاده از هر یک بسته به شرایط محیطی و جغرافیائی محل نیروگاه میباشد و ما قصد نداریم تمامی این روشها را مورد بررسی قرار دهیم، تنها به بررسی متداولترین این روشها که امروزه مورد توجه قرار دارد میپردازیم (این روش در میان سایر روشها با قوانین و شرایط زیست محیطی تطابق زیادی دارد و همین امر باعث شده است تا مورد توجه قرار گیرد) البته این روش در میان روشهای دیگر دارای کمترین راندمان میباشد.
اساس کار این سیستم مانند رادیاتور در اتومبیل است. آب خنک کن پس از آنکه گرمای نهان سیال محرک را دریافت نمود (این آب دارای حجم زیاد است) توسط پمپهای پر قدرتی به سمت رادیاتورهای (دلتا) که بیرون از چگالنده و در محل باز قرار دارند هدایت میشود و گرمای دریافتی را به محیط بیرون پس میدهد.
به منظور جابهجایی سریعتر هوای اطراف دلتا از برجهای بلند که تنها به منظور تقویت جابهجایی هوا بنا شده است بهره میگیرند این برجها که در اصلاح برجهای خنک کننده نام دارند تنها باید فشار محرک لازم جهت جابهجایی مناسب هوا را فراهم آورند.
سیکل ترمودینامیکی ایدهآل برای نیروگاه، بخار، سیکل رانکین (RANKINE) است و روشهای متعددی جهت افزایش راندمان این سیکل وجود دارد که در زیر به معرفی آنها میپردازیم.
۱ـ سوپر هیت کردن بخار ورودی به توربین
۲ـ افزایش فشار بویلر
۳ـ کاهش فشار کندانسور
البته به کارگیری این روشها در یک نیروگاه بخار با محدودیتهایی روبروست، روشهای دیگری نیز در قالب سیکل رانکین ارائه شده است که باعث افزایش راندمان نیروگاهی که در این سیکل کار میکند میشود این نوع روشها عبارتند از:
۱ـ سیکل گرمایش مجدد ( REAHEAT CYCLE)
۲ـ سیکل بازیابی ( REGENERATIVE FEED HEATING)
3-1ـ نیروگاه هستهای:
نیروگاه هستهای، نیروگاهی است که در آن از انرژی هستهای برای تولید انرژی الکتریکی استفاده میشود. نیروگاه حرارتی با سوخت فسیلی بعلت این که در سالهای متمادی تکامل پیدا کرده است امروزه نسبت به نیروگاههای هستهای که هنوز مراحل ابتدائی را میگذرانند و در شرف تکمیل هستند بسیار اقتصادیتر و ارزانتر است و فقط نیروگاه هستهای با قدرت MW600 به بالا میتواند تا حدودی با نیروگاههای حرارتی نوع دیگر رقابت کند نیروگاه هستهای با قدرت کمتر از M W600 فقط به عنوان یک نیروگاه آزمایشی مورد استفاده قرار میگیرد.
بنا بر فرضیههای جدید، اتم تشکیل شده است از تعدادی الکترون با بار منفی و یک هسته با بار مثبت الکترونها با سرعتی در حدود M/S1000000= V در فواصل معین و در روی مدارهای مشخص به دور هسته داخلی اتم که ساکن میباشد میگردند.
هسته اتم خود از ذرات الکتریسیته مثبت به نام پروتون و ذراتی از نظر الکتریکی خنثی و بدون بار بنام نوترون تشکیل شده است.
مجموع پروتون و نوترون، نوکلئون نامیده میشود. ( NUKLEON) بدیهی است چون اتم از نظر الکتریکی خنثی است لذا تعداد پروتونهای هسته برابر تعداد الکترونهای دوار آن است.
تعداد پروتونها را عدد اتمی عنصر مینامند و تعداد کل پروتون و نوترونهای اتم را عدد جرمی عنصر مینامند. این تعداد مساوی نزدیکترین عدد صحیح به وزن اتمی جسم است. مثلاً آلومینیوم که وزن اتمی آن ۲۷ است، دارای ۱۴ عدد نوترون و ۱۳ عدد پروتون در هسته و ۱۳ عدد الکترون در خارج هسته میباشد.
به ترتیب برای معرفی عناصر آنجایی که فعل و انفعالهای مربوط به هسته در میان باشد هسته عناصر را با دو رقم فوقالذکر (عدد جرمی و عدد اتمی) مشخص میکنند.
طبق قوانین فیزیکی باید پروتونها که همه دارای بار مثبت هستند و یکدیگر را دفع میکنند و چون این کار انجام نمیشود باید نیرویی قوی موجود باشد که اینها را به هم متصل نگه میدارد و نمیگذارد هسته متلاشی شود. این نیرو را نیروی جاذبه هستهای یا به اختصار نیروی هستهای یا نیروی اتصالی مینامیم. این تجمع و ترتیب نوکلئون کاملاً مستقل از حرارت، فشار و اثرات شیمیایی میباشد و به این جهت کاملاً پایدار و با ثبات است.
منبع این نیرو کجاست؟ امروزه ثابت شده است که جرم یک هسته کوچکتر از مجموع جرمهای اجزاء تشکیل دهنده هسته (نوکلئون) است.
این حقیقت را میتوان فقط به کمک رابطه که انیشتاین به نام قانون انرژیتیک ماده بیان کرده است ثابت نمود.
رابطهای است بین جرم و انرژی و در آن سرعت نور میباشد. از رابطه انیشتاین میتوان چنین استنباط کرد که جرم و انرژی در ذرات یکی هستند و باید تحت شرایط خاصی و تحویلات بخصوصی بتوان جرم را به انرژی تبدیل کرد. البته برای تبدیل کامل جرم به انرژی هنوز علم فیزیک امکانپذیری را نشان نمیدهد. اما تکنیک امروز در حدی است که بتوان به کمک تحویلاتی در هسته اتم جرم اتصالیها را به صورت انرژی آزاد کرد. جرم اتصالی در اصل جزء بسیار کوچکی از هسته بوده و در حقیقت چیزی نیست جز تعداد معینی نوترون و پروتون که از نوکلئون هسته گرفته شده و تبدیل به انرژی گردیده است این انرژی که انرژی اتصالی نامیده میشود باعث نگه داشتن هسته میشود، زیرا همانطور که گفته شد، هسته از تعداد زیادی پروتون یا بار الکتریکی مثبت تشکیل شده و بدون تأثیر نیرویی باید هم متلاشی میشد.
ـ تولید انرژی در اثر تخلیط یا تقطیع هسته:
اگر هسته یک اتمی را بخواهیم به اجزاء خودش تجزیه کنیم باید به اندازه انرژی اتصالی آن انرژی صرف کنیم. پس میتوان گفت که در موقع تخلیط مجدد، اجزاء کوچک نیز مقدار زیادی انرژی آزاد میشود. به همین ترتیب در موقع تخلیط هسته عناصر سبک برای به وجود آمدن عنصر نیمه سنگین مقداری از انرژی اتصالیها اضافی میآید، که مجبوراً آزاد میشود.
تخلیط یک کیلوگرم هلیوم (تهیه مصنوعی یک کیلوگرم هلیوم از طریق تخلیط پروتون و نوترون) تقریباً کیلووات ساعت انرژی تولید میکند. تخلیط هسته (مبنای بمب هیدروژنی) احتیاج به درجه حرارتهای بسیار زیاد در حدود میلیون درجه دارد و هنوز تهیه آن از نظر فنی با اشکالاتی مواجه است. از این جهت است که امروزه برای تولید انرژی از عمل تخلیط استفاده نمیشود، بلکه از عمل تقطیع استفاده میشود.
اگر انرژی اتصالی هستهای کوچکتر از مجموع انرژی اتصالی دو نیمه همان هسته باشد، باید دو نیم کردن، یا تقطیع هسته انرژیزا باشد. زیرا مصرف انرژی برای مجزا کردن تمام نوکلئونهای هسته به مراتب کمتر از انرژی لازم برای جمعآوری نوکلئونها و ترکیب مجدد هسته میباشد.
این موضوع اساس بدست آوردن انرژی توسط تقطیع (شکستن) هسته عناصر سنگین است. زیرا انرژی اتصالی این هستهها کوچکتر از مجموع انرژی دو عنصر نیمه سنگین میباشد که در اثر تقطیع بدست آمده است.
آسانترین راه تقطیع هسته این است که یک هسته سنگین توسط یک نوترون بمباران شود. (اساس کار راکتورهای اتمی). اگر هسته نوترون را بپذیرد، هسته از نظر انرژی اتصالی یک طبقه بالا میرود و در نتیجه میشکند. متأسفانه چنین راکسیونی تنها در یک ماده که در طبیعت موجود است پیدا میشود و آن هم ایزوتوپ اورانیوم است. البته عناصر سنگین دیگر را نیز میتوان به همین طریق تقطیع کرد ولی این عمل فقط به کمک نوترون که دارای انرژی سنتیک فوقالعاده زیاد است ممکن است. در موقع تقسیم هسته سنگین اورانیوم به دو هسته نیمه سنگین مثلاً باریم و کرپتن و یا هگزانون و ساماریوم به ازاء هر نوکلئون یک انرژی اتصالی آزاد میشود، و از تقطیع یک کیلوگرم اورانیوم در حدود انرژی بدست میآید.
اگر همین انرژی را بخواهیم با مواد سوختنی از طریق شیمیائی ایجاد کنیم تقریباً ۱۷۰۰ تن گازوئیل و یا ۲۵۰۰۰ تن زغال سنگ لازم است. عامل تقطیع همانطور که ذکر شد یک عدد نوترون است که با انرژی سنتیک زیاد به داخل مجتمع نوکلئون هسته وارد میشود. در هر تقطیع هسته به طور متوسط ۴۶/۲ نوترون آزاد میشود که قادر است مجدداً هسته جدیدی را تقطیع کند.
یک راکسیون زنجیرهای فقط موقعی به وجود میآید که حداقل یکی از نوترونهای آزاد شده در اثر تقطیع باعث تقطیع دیگری میشود. اگر مقدار مواد قابل تقطیع کم باشد، مقدار زیادی از نوترونها قبل از تقطیع دیگر از دست میروند و از محیط عمل خارج میشوند و به این جهت برای راکسیون زنجیرهای و پیدرپی حداقل ۵۰ کیلوگرم اورانیوم لازم است.
بین نوترون آزاد و یک هسته امکان تحویلات زیر موجود است
۱) نوترون داخل هسته شده و هسته باز میشود. این همان عمل تقطیع است که فوقاً به آن اشاره شد.
۲) نوترون داخل هسته میشود و توسط هسته جذب میشود در این صورت یک ایزوتوپ بوجود میآید. این همان عملی است که در راکتورها برای بوجود آوردن عناصر مصنوعی آزمایش میشود.
۳) هسته و نوترون به هم برخورد میکنند ولی نوترون به حالت ارتجاعی یا نیمه ارتجاعی به خارج پرتاب میشود. در پرتاب نیمه ارتجاعی نوترون در ضمن برخورد به هسته مقداری از انرژی خود را به هسته میدهد و با سرعت کمتری برمیگردد.
۴-۱- نیروگاه اضطراری: