بررسی پارامترهای مهم در شبکه های عصبی فازی‎

منطق فازی که در آن «زبان طبیعی» به جای متغیرهای عددی برای تشریح رفتار و عملکرد سیستم ها به کار می رود.،بیشترین کاربرد این مقوله به ترتیب در سازماندهی و فراهم  آوری اطلاعات بوده است. اکنون برای تضمین امنیت شبکه  های اطلاعاتی، از منطق فازی بهره -برداری می شود. در برخی زمینه  ها مانند مستند سازی و مدیریت رکوردها نیز تاکنون پژوهشی با موضوع فازی به انجام نرسیده است. در سالهای اخیر، رویکرد عمده این بحث به سمت نظام های خبره و هوش مصنوعی سوق یافته است. به نظر می‌رسد برای حل بسیاری از گره‌ های موجود در حوزه مدیریت اطلاعات، می توان از منطق فازی کمک گرفت.

شبکه های عصبی فازی‎ یک سامانه پردازشی داده‌ها است که از مغز انسان ایده گرفته و پردازش داده‌ها را به عهده پردازنده‌های کوچک و بسیار زیادی سپرده که به صورت شبکه‌ای به هم پیوسته و موازی با یکدیگر رفتار می‌کنند تا یک مسئله را حل نمایند. در این شبکه‌ها به کمک دانش برنامه نویسی، ساختار داده‌ای طراحی می‌شود که می‌تواند همانند نورون عمل کند. که به این ساختارداده نورون گفته می‌شود. بعد باایجاد شبکه‌ای بین این نورونها و اعمال یک الگوریتم آموزشی به آن، شبکه را آموزش می‌دهند.

شبکه های عصبی فازی‎ یک سیستم ارگانی شامل نورون‌ها می‌باشد که اعمال و واکنش جانداران را هماهنگ می‌سازد و سیگنال‌ها را به بخشهای متفاوت بدن می‌فرستد. در بیشتر جانداران سیستم عصبی شامل دو بخش مرکزی و بخش جانبی است. در استفاده‌های جدیدتر این عبارت به شبکه عصبی مصنوعی که از نورون‌هایی مصنوعی ساخته شده‌است هم اشاره دارد. بنابراین عبارت ‘شبکه عصبی’ در حالت کلی به دو مفهوم مختلف شبکه عصبی زیستی و شبکه عصبی مصنوعی مختلف اشاره دارد.

شبکه‌های عصبی با توانایی قابل توجه خود در استنتاج نتایج از داده‌های پیچیده می‌توانند در استخراج الگوها و شناسایی گرایش‌های مختلفی که برای انسان‌ها و کامپیوتر شناسایی آنها بسیار دشوار است استفاده شوند.

تنظیم پارامترهای شبکه عصبی مصنوعی را میتوان به عنوان یکی از مهمترین مشکلات استفاده از آن عنوان کرد. روش شبکه عصبی فازی نسبت به سایر روش ها قدرت بالایی در شناخت روند موجود بر داده ها دارد و در تمامی روشهای اندازه گیری خطا نسبت به سایر روشها خطای کمتری دارد . نتایج تحقیق بیانگر آن است که روش شبکه عصبی فازی با توجه به میزان کم خطا دارای همگرایی سریع و توانایی تقریب بالایی است و برای پیش بینی مناسب است.

فهرست :

فصل اول: منطق فازی

مقدمه ای بر چیستی منطق فازی

مثالی از منطق فازی در زندگی روزمره

چرا سیستم فازی؟

سیستم های فازی چگونه سیستم هایی هستند؟

سه سیستم فازی وجود دارد

مشکلات عمده سیستم فازی TSK عبارتند از

منطق فازی و مدیریت اطلاعات در کتابخانه

تاریخچه منطق فازی

منطق فازی چیست؟

سیستم های فازی کجا و چگونه استفاده می شوند ؟

کاربردهای منطق فازی

کاربردهای منطق فازی سازماندهی اطلاعات

فصل دوم: شبکه عصبی (Neural Network)

مقدمه

شبکه عصبی

توصیف شبکه های عصبی

شبکه‌های عصبی زیستی

معرفی شبکه عصبی مصنوعی

تاریخچه شبکه‌های عصبی مصنوعی

چرا از شبکه‌های عصبی استفاده می‌کنیم

شبکه‌های عصبی در مقایسه با کامپیوترهای سنتی

شباهت با مغز

شبکه عصبی دقیقاً چیست

ساختار شبکه‌های عصبی

تقسیم بندی شبکه‌های عصبی

ویژگی‌های یک شبکه‌عصبی‌

روش کار نرون‌ها

نورون عصبی

یک نورون مصنوعی چه شکلی است؟

چطور از یک نورون مصنوعی استفاده می کنید؟

پیاده‌سازی‌های الکترونیکی نرون‌های مصنوعی

مدل ریاضی

کاربرد شبکه‌های عصبی

معایب شبکه‌های عصبی

چگونگی یادگیری شبکه های عصبی

ساختار نورون و لایه ی نورون

تعریف کلاس

توضیح لوپ اصلی

فصل سوم : بررسی ساختار و پارامترهای مهم شبکه های عصبی فازی

مقدمه

یکپارچگی منطق فازی و شبکه های عصبی

برخی از کاربردهای سیستم های فازی  عصبی

انواع شبکه عصبی فازی و نوروفازی

پارامترهای مهم سیستم های عصبی فازی

سامانه استنتاج تطبیقی عصبی فازی

موتور استنتاج فازی

انواع موتور استنتاج

تفسیری کامل شبکه تطبیقی بر اساس سیستم های با منطق فازی

مرور ادبیات

تعیین معیار های عملکرد شبکه عصبی مصنوعی همراه با وزن هریک از آنها

تعیین عوامل کنترلی که بیشترین تاثیر را بر روی معیارهای عملکرد تعیین شده دارند

آنالیز واریانس هر یک از معیارهای عملکرد به صورت جداگانه

استفاده از روش برنامه ریزی فازی جهت یافتن بهترین ترکیب عوامل کنترلی تاثیرگذار

مثال عددی

تعیین معیارهای عملکرد شبکه عصبی مصنوعی همراه با وزن هر یک از آنها

تعیین عوامل کنترلی که بیشترین تاثیر را بر روی معیارهای عملکرد تعیین شده دارند

آنالیز واریانس هر یک از معیارهای عملکرد بصورت جداگانه

تکنیک تبدیل   هدف را دنبال میکند :

استفاده از روش برنامه ریزی فازی جهت یافتن بهترین ترکیب عوامل کنترلی تاثیر گذار

تحقیقات و پژوهش های صورت گرفته در زمینه استفاده از شبکه های عصبی فازی

پیش بینی عوامل موثر بر قیمت طلا

مدل سازی پیش بینی قیمت سهام

مدل سازی پیش بینی با استفاده از شبکه عصبی   فازی : قیمت نفت

مدلسازی پیش بینی جایگاه تیم ملی فوتبال ایران در رده بندی فیفا با استفاده از شبکه های عصبی فازی

برنامه ریزی تعمیرات و نگه داری پیش گویانه ایستگاه های گاز با رویکرد PCA و شبکه های عصبی فازی

نتیجه گیری



 قیمت: 15,000 تومان  پرداخت و دانلود

پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.


برچسب ها: بررسی پارامترهای مهم در شبکه های عصبی فازی‎
دسته بندی: ائبوک ها و کتاب » آموزشی

تعداد مشاهده: 250 مشاهده

فرمت فایل دانلودی:.pdf

فرمت فایل اصلی: pdf

تعداد صفحات: 128

حجم فایل:3,557 کیلوبایت


پشتیبانی شما

فارس فایل در سال 1391 با هدف کارآفرینی تاسیس و الان به عنوان اولین مرکز ارائه دهنده فروشگاه های‌ اینترنتی خرید آنلاین، که بخش بزرگی از تجارت جهانی را تشکیل داده اند و روزانه در حال افزایش این گردش مالی جهانی هستند، فرصتی مناسب برای راه اندازی کسب و کار خود بصورت رایگان با فروش محصولات مجازی، فایلهای اینترنتی و....در اختیار شما قرار داده است.

تماس با ما

کد پستی: 9137944376
آدرس دفتر مرکزی: خراسان رضوی، خیابان انقلاب، عدالت7 ،پژوهشسرای ولیعصر مشهد
(ساعت پاسخگویی 8صبح الی 22شب)

تلفن تماس6648 492 0930 ایمیلfarsfile@gmail.com ارسال پیام واتساپ

آمار سایت

261,389 بازدید امروز
365,658 بازدید دیروز
153,162,600 بازدید کل
28,653 فروش موفق
2,057 تعداد کاربران
41,336 تعداد فایل
کلیه حقوق مادی و معنوی سایت برای فارس فایل محفوظ می باشد.
طراحی توسط: ارتباط نو | کدنویسی توسط : وبتینا